شیمی

الکترو شیمی
طرز تهیه بعضی از الکترودها

 

 

الکترود نقره

 

برای کارهای دقیق در ازمایشگاه الکترود نقره را باید با فیلمی از نقره به شرح زیر پوشانید :

در حدود 100ml محلول نقره نیترات با غلظت 3.5g/l تهیه کنید ( در حدود 0.02M  ) . به این محلول با دقت ( کم کم و در حال همزدن )محلول رقیق پتاسیم سیانید ( در حدود 0.1m) اضافه کنید تا اثار رسوب نقره سیانید پیدا شود ( پتاسیم سیانید سمی است ) . الکترود نقره رابشویید و خشک کنید و چند ثانیه در نیتریک اسید 6M فرو کنید سپس با اب مقطر بشویید. این الکترود را به عنوان کاتد همراه با الکترود نقره دیگر ( به عنوان اند ) در محلولی که اماده کرده اید قرار دهید. شدت جریانی به اندازه 0.2mA از محلول عبور دهید تا سطح کاتد با فیلم نازکی از نقره پوشیده شود. حال الکترود را با اب مقطر بشویید و در اب مقطر قرار دهید.

 

 

الکترود طلا و پلاتین

 

الکترود پلاتین اگر برای واکنش های اکسایش – کاهش به کار رود به شکل براق و اگر به عنوان الکترود هیدروژن یا برای اندازگیری کنداکتومتری به کار رود به صورت  سیاه مورد استفاده قرار می گیرد . پلاتین شیاه یا پلاتین پلاتینه شده به شرح زیر تهیه می شود :

دو عدد الکترود پلاتین را با نیتریک اسید غلیظ بشویید و با اب مقطر ابکشی کنید. محلول پلاتینی از 3 گرم کلروپلاتینیک اسید و 0.02 تا 0.03 گرم سرب استات در 100 میلی لیتر اب تهیه کنید.  الکترودها را در این محلول قرار دهید و انها را به یک انباره 4 ولت با سویچ دو طرفه وصل کنید. جریان را طوری تنظیم کنید تا گاز به طور متعادل و منظم متصاعد شود. هر 10 تا 15 ثانیه یک بار جهت جریان را عوض کنید تا جای کاتد و اند با هم عوض شود. ضخامت پلاتین سیاه پوشیده شده اگر به اندازه متوسط باشد بهتر از یک لایه نازک است. پلاتین سیاه چسبیده به الکترود اکنون ممکن است دارای مقداری مایع و گاز باشد . این را می توانید با فرو کردن الکترود در سولفوریک اسید 0.3M و اتصال مجدد انها به انباره برطرف سازید. برای پاکسازی کامل الکترودها از گاز و مواد مزاحم بهتر است که این عمل را به مدت 30 دقیقه به طور متناوب ادامه دهید ( هر 10 تا 15 ثانیه جهت جریان را عوض کنید ) تا متصاعد شدن گاز از سطح الکترودها کاملا قطع شود. حال الکترود را با اب مقطر بشویید و در اب قرار دهید.

 

 

الکترود نقره – نقره کلرید اشباع ( الکترود مرجع )

 

این الکترود از یک سیم نقره یا پلاتین نقره اندود شده تشکیل شده است که روی ان را به روش الکتریکی با لایه نازک از نقره کلرید پوشانیده اند و ان را در محلول پتاسیم کلرید اشباع قرار داده اند. پتانسیل الکترود نقره – نقره کلرید اشباع در دمای 25 درجه سانتیگراد نسبت به الکترود استاندارد هیدروژن 0.199 ولت است. طرز پوشاندن الکترود نقره با لایه نازک از نقره کلرید به روش الکتریکی به این شرح است :

یک الکترود نقره براق را که به روش یک تهیه کرده اید در کلریدریک اسید 0.1M قرار دهید و ان را به قطب مثبت منبع برق DC وصل کنید. یک عدد الکترود پلاتین یا زغال باطری را به جای کاتد به کار ببرید و شدت جریانی به اندازه 2.5mA/cm به مدت 30 ثانیه از محلول عبور دهید. سعی کنید در مدت الکترولیز دانسیته جریان کمتر از 0.6mA/cm نباشد. زیرا دانسیته جریان کم باعث تشکیل یک لایه خاکستری در سطح الکترود می شود که به نور حساس بوده و در ان صورت پاسخ الکترود توام با خطا خواهد بود. طرز ساخت یک نوع الکترود نقره – نفره کلرید اشباع به صورت خیلی ساده در شکل زیر نشان داده شده است.

 

                                                                           

 

 

الکترود کالومل اشباع ( الکترود مرجع )

 

این الکترود به دلیل ساخت ساده ای که دارد معمولا بیش از سایر الکترودهای کالومل ( الکترود کالومل غیر اشباع ) به کار می رود. یک الکترود کالومل اشباع که به اسانی ساخته میشود در شکل زیر نشان داده شده است. این الکترود به وسیله پل نمکی ( متشکل از KCl  اشباع که با ان ارتباط دارد ) به ظرفی که الکترود شناساگر در ان قرار گرفته است متصل می شود.

 

                                                                

+ نوشته شده در  سه شنبه 24 مهر1386ساعت 11:17  توسط مدیر وبلاگ |  پیام به مدیر وبلاگ
 

 

تمام واکنشهای شیمیایی ، اساسا ماهیت الکتریکی دارند، زیرا الکترونها در تمام انواع پیوندهای شیمیایی (به راههای گوناگون) دخالت دارند. اما الکتروشیمی بیش از هر چیز بررسی پدیده‌های اکسایش- کاهش است. روابط بین تغییر شیمیایی و انرژی الکتریکی ، هم از لحاظ نظری و هم از لحاظ عملی حائز اهمیت است.

از واکنشهای شیمیایی می‌توان برای تولید انرژی الکتریکی استفاده کرد (در سلولهایی که سلولهای ولتایی یا سلولهای گالوانی نامیده می‌شوند) و انرژی الکتریکی را می‌توان برای تبادلات شیمیایی بکار برد (در سلولهای الکترولیتی). علاوه بر این ، مطالعه فرآیندهایی الکتروشیمیایی منجر به فهم و تنظیم قواعد آنگونه از پدیده‌های اکسایش - کاهش که خارج از اینگونه سلولها روی می‌دهند، نیز می‌شود. با برخی فرآیندهای الکتروشیمیایی آشنا می‌شویم.

رسانش فلزی

جریان الکتریکی ، جاری شدن بار الکتریکی است. در فلزات ، این بار بوسیله الکترونها حمل می‌شود و این نوع رسانش الکتریکی ، رسانش فلزی نامیده می‌شود. با بکار بردن یک نیروی الکتریکی که توسط یک باتری یا هر منبع الکتریکی دیگر تامین می‌گردد، جریان الکتریکی حاصل می‌شود و برای تولید جریان الکتریکی ، یک مدار کامل لازم است. تشبیه جریان الکتریسیته به جریان یک مایع ، از قدیم متداول بوده است. در زمانهای گذشته ، الکتریسیته به‌صورت جریانی از سیال الکتریکی توصیف می‌شد.

قراردادهای قدیمی که سابقه آنها ممکن است به "بنجامین فرانکلین" برسد و پیش از آن که الکترون کشف شود، مورد پذیرش بوده است، بار مثبتی به این جریان نسبت می‌دهد. ما مدارهای الکتریکی را با حرکت الکترونها توجیه خواهیم کرد. اما باید به خاطر داشت که جریان الکتریکی بنا به قرارداد بطور اختیاری مثبت و به صورتی که در جهت مخالف جاری می‌شود، توصیف می‌گردد.

جریان الکتریکی برحسب آمپر (A) و بار الکتریکی برحسب (C) کولن اندازه گیری می‌شود. کولن ، مقدار الکتریسیته است که در یک ثانیه با جریان 1 آمپر از نقطه‌ای می‌گذرد: 1C = 1A.S و 1A = 1C/S . جریان با اختلاف پتانسیل الکتریکی که بر حسب ولت اندازه گیری می‌شود، در مدار رانده می‌شود. یک ولت برابر یک ژول بر کولن است. 1V = 1J/C یا 1V.C = 1J . یک ولت لازم است تا یک آمپر جریان را از مقاومت یک اهم بگذراند. I=ε/R یا ε=IR

رسانش الکترولیتی

رسانش الکترولیت ، هنگامی صورت می‌گیرد که یونهای الکترولیت بتوانند آزادانه حرکت کنند، چون در این مورد ، یونها هستند که بار الکتریکی را حمل می‌کنند. به همین دلیل است که رسانش الکترولیتی ، اساس توسط نمکهای مذاب و محلولهای آبی الکترولیتها صورت می‌گیرد. علاوه بر این ، برای تداوم جریان در یک رسانای الکترولیتی لازم است که حرکت یونها با تغییر شیمیایی همراه باشد. منبع جریان در یک سلول الکترولیتی ، الکترونها را به الکترود سمت چپ می‌راند.

بنابراین می‌توان گفت که این الکترود ، بار منفی پیدا می‌کند. این الکترونها از الکترود مثبت سمت راست کشیده می‌شوند. در میدان الکتریکی که بدین ترتیب بوجود می‌آید، یونهای مثبت یا کاتیونها به طرف قطب منفی یا کاتد و یونهای منفی یا آنیونها به طرف قطب مثبت یا آند جذب می‌شوند. در رسانش الکترولیتی ، بار الکتریکی بوسیله کاتیونها به طرف کاتد و بوسیله آنیونها که در جهت عکس به طرف آند حرکت می‌کنند، حمل می‌شود.

برای این که یک مدار کامل حاصل شود، حرکت یونها باید با واکنشهای الکترودی همراه باشد. در کاتد ، اجزای شیمیایی معینی (که لازم نیست حتما حامل بار باشند) باید الکترونها را بپذیرند و کاهیده شوند و در آند ، الکترونها باید از اجزای شیمیایی معینی جدا شده ، در نتیجه آن ، اجزا اکسید شوند. الکترونها از منبع جریان خارج شده ، به طرف کاتد رانده می‌شوند.

عوامل موثر بر رسانش الکترولیتی

رسانش الکترولیتی به تحرک یونها مربوط می‌شود و هر چند که این یونها را از حرکت باز دارد، موجب ایجاد مقاومت در برابر جریان می‌شود. عواملی که بر رسانش الکترولیتی محلولهای الکترولیت اثر دارند، عبارتند از : جاذبه بین یونی ، حلال پوشی یونها و گرانروی حلال. انرژی جنبشی متوسط یونهای ماده حل شده با افزایش دما زیاد می‌شود و بنابراین مقاومت رساناهای الکترولیتی ، بطور کلی با افزایش دما کاهش می‌یابد. یعنی رسانایی زیاد می‌شود. به‌علاوه ، اثر هر یک از سه عامل مذکور با زیاد شدن دما کم می‌شود.

الکترولیز (برقکافت)

الکترولیز یا برقکافت سدیم کلرید مذاب ، یک منبع صنعتی تهیه فلز سدیم و گاز کلر است. روشهای مشابهی برای تهیه دیگر فلزات فعال ، مانند پتاسیم و کلسیم بکار می‌روند. اما چنانکه بعضی از محلولهای آبی را برقکافت کنیم، آب به جای یونهای حاصل از ماده حل شده در واکنشهای الکترودی دخالت می‌کند. از اینرو ، یونهای حامل جریان لزوما بار خود را در الکترودها خالی نمی‌کنند. مثلا در برقکافت محلول آبی سدیم سولفات ، یونهای سدیم به طرف کاتد و یونهای سولفات به طرف آند حرکت می‌کنند، اما بار این هر دو یون با اشکال تخلیه می‌شود.

بدین معنی که وقتی عمل برقکافت بین دو الکترود بی‌اثر در جریان است، در کاتد ، گاز هیدروژن بوجود می‌آید و محلول پیرامون الکترود ، قلیایی می‌شود:


(2H2O + 2e → 2OH- + H2(g

یعنی در کاتد ، کاهش صورت می‌گیرد، ولی به جای کاهش سدیم ، آب کاهیده می‌شود. بطور کلی ، هرگاه کاهش کاتیون ماده حل شده مشکل باشد، کاهش آب صورت می‌گیرد. اکسایش در آند صورت می‌گیرد و در برقکافت محلول آبی Na2SO4 ، آنیونها (2-SO4) که به طرف آند مهاجرت می‌کنند، به‌سختی اکسید می‌شوند:


2SO42- → S2O42- + 2e

بنابراین ترجیهاً اکسایش آب صورت می‌گیرد:


2H2O → O2(g) + 4H+ + 4e

یعنی در آند ، تولید گاز اکسیژن مشاهده می‌شود و محلول پیرامون این قطب ، اسیدی می‌شود. بطور کلی هرگاه اکسایش آنیون ماده حل شده مشکل باشد، آب در آند اکسید می‌شود. در الکترولیز محلول آبی NaCl ، در آند ، یونهای -Cl اکسید می‌شوند و گاز Cl2 آزاد می‌کنند و در کاتد ، احیای آب صورت می‌گیرد. این فرآیند ، منبع صنعتی برای گاز هیدروژن ، گاز کلر و سدیم هیدروکسید است:


2H2O + 2Na+ + 2Cl- → H2(g) + 2OH- + 2Na+ + Cl2


تصویر

سلولهای ولتایی

سلولی که به‌عنوان منبع انرژی الکتریکی بکار می‌رود، یک سلول ولتایی یا یک سلول گالوانی نامیده می‌شود که از نام "آلساندرو ولتا" (1800) و "لوئیجی گالوانی" (1780) ، نخستین کسانی که تبدیل انرژی شیمیایی به انرژی الکتریکی را مورد آزمایش قرار دادند، گرفته شده است. واکنش بین فلز روی و یونهای مس II در یک محلول ، نمایانگر تغییری خود به خود است که در جریان آن ، الکترون منتقل می‌شود.


(Zn(s) + Cu2+(aq) → Zn2+(aq) + Cu(s

مکانیسم دقیقی که بر اساس آن انتقال الکترون صورت گیرد، شناخته نشده است. ولی می‌دانیم که در آند ، فلز روی اکسید می‌شود و در کاتد ، یونهای Cu+2 احیا می شود و به ترتیب یونهای Zn+2 و فلز Cu حاصل می‌شود و الکترونها از الکترود روی به الکترود مس که با یک سیم به هم متصل شده‌اند، جاری می‌شوند، یعنی از آند به کاتد.


Zn(s) → Zn2+(aq) + 2e

(Cu2+(aq)+2e → Cu(s

نیم سلول سمت چپ یا آند ، شامل الکترودی از فلز روی و محلول ZnSO4 و نیم سلول سمت راست یا کاتد ، شامل الکترودی از فلز مس در یک محلول CuSO4 است. این دو نیم سلول ، توسط یک دیواره متخلخل از هم جدا شده‌اند. این دیواره از اختلال مکانیکی محلولها ممانعت می‌کند، ولی یونها تحت تاثیر جریان الکتریسیته از آن عبور می‌کنند. این نوع سلول الکتریکی ، سلول دانیل نامیده می‌شود.

نیروی محرکه الکتریکی

اگر در یک سلول دانیل ، محلولهای 1M از ZnSO4 و 1M از CuSO4 بکار رفته باشد، آن سلول را با نماد گذاری زیر نشان می‌دهیم:


(Zn(s) │ Zn2+(1M) │ Cu2+(1M) │ Cu(s

که در آن خطوط کوتاه عمودی ، حدود فازها را نشان می‌دهند. بنابر قرارداد ، ماده تشکیل دهنده آند را اول و ماده تشکیل دهنده کاتد را در آخر می‌نویسیم و مواد دیگر را به ترتیبی که از طرف آند به کاتد با آنها برخورد می‌کنیم، میان آنها قرار می‌دهیم. جریان الکتریکی تولید شده در یک سلول ولتایی ، نتیجه نیروی محرکه الکتریکی (emf) سلول است که برحسب ولت اندازه گیری می‌شود.

هر چه تمایل وقوع واکنش سلول بیشتر باشد، نیوری محرکه الکتریکی آن بیشتر خواهد بود. اما emf یک سلول معین به دما و غلظت موادی که در آن بکار رفته است، بستگی دارد. emf استاندارد، ˚ε ، مربوط به نیروی محرکه سلولی است که در آن تمام واکنش دهنده‌ها و محصولات واکنش در حالت استاندارد خود باشند. مقادیر ˚ε معمولا برای اندازه گیری‌هایی که در ˚25C به عمل آمده است،
معین شده است
 

javascripts



google
بزرگترین سایت جاوا اسکریپت ایران
Clock And Date