شیمی

شیمی پلیمر
 

دنیای پلیمر

مقدمه

 

تصور جهان پیشرفته کنونی بدون وجود مواد پلیمری مشکل می‌باشد. امروزه این مواد جزیی از زندگی ما شده‌اند و در ساخت اشیای مختلف ، از وسایل زندگی و مورد مصرف عمومی تا ابزار دقیق و پیچیده پزشکی و علمی بکار می‌روند. کلمه پلیمراز کلمه یونانی (Poly) به معنی چند و ( Meros ) به معنای واحد با قسمت بوجود آمده است. در این میان ساختمان پلیمرها با مولکولهای بسیار دراز زنجیر گونه با ساختمان فلزات کامل متفاوت است. این مولکولهای بلند از اتصال و بهم پیوستن هزاران واحد کوچک مولکولی مرسوم به منومر تشکیل شده‌اند. مواد طبیعی مانند ابریشم ، لاک ، قیر طبیعی ، کشانها و سلولز ناخن دارای چنین ساختمان مولکولی هستند                             .
البته تا اوایل قرن نوزدهم میلادی توجه زیادی به مواد پلیمری نشده بود بومیان
آمریکای مرکزی از برخی درختان شیرابه‌هایی استخراج می‌کردند که شیرابه بعدها نام لاتکس به خود گرفت. در سال 1829 ، دانشمندان متوجه شدند که در اثر مخلوط کردن لاتکس طبیعی با سولفور و حرارت دادن آن ماده‌ای قابل ذوب ایجاد می‌شود که می‌توان از آن محصولات مختلفی نظیر چرخ ارابه یا توپ تهیه کرد. در سال 1909 میلادی فنل فرمالدئید موسوم به باکلیت ساخته شد که در تهیه قطعات الکتریکی ، کلیدها ، پریزها و وسایل مصرف زیادی دارد.
در اثنای جنگ جهانی دوم موادی مثل نایلون پلی اتیلن ، اکریلیک موسوم به پرسپکس به دنیا عرضه شد. نئوپرن را شرکت دوپان در سال 1932 ابداع و به شکل تجارتی ابتدا با نام دوپرن و بعدها نئوپرن عرضه کرد.

 

  معرفی پلیمر:

 

پلیمر کلمه ای است که همانند بسیاری از دیگر کلمات موجود در علم شیمی از واژگان یونانی برگزیده شده است . این واژه از دو بخش «پلی +مر» به معنای «بسیار +قسمت» تشکیل شده است . به این سبب در زبان فارسی واژه «بسپار» که تشکیل شده از دو کلمه «بس +پار» و به معنای بسیار پاره یا همان بسیار بخش است ، برای این واژه یونانی در نظر گرفته شده است .

 

    تعریف :

 

واکنشی را یک واکنش پلیمری گویند که در واقع بصورت زیر باشد :

واکنشی است شیمیایی که در آن مولکولهای کوچکتر به نام پاره با یکدیگر ترکیب شده و مولکولی با وزن مولکولی بالا را پدید می آورند و در واقع بسیار پاره تشکیل می گردد. برای توضیح بیشتر بعضی از مطالب به نمایش گفته ها می پردازیم و نمایش این گفته به این صورت است که اگر A یک «پاره » باشد و n عدد از این پاره ها را داشته باشیم آنگاه از واکنش شیمیایی میان این nA که بصورت

 

 می باشد ، ماده ی B که تقریبا در بعضی از واکنشهای پلیمریزاسیون که محصول اضافی ندارند (یعنی ماده ی دیگری غیر از ماده ی مورد نظر در تولید ندارند) بصورت یعنی ماده ی B برابر با n تا ماده ی A ) تشکیل می گردد . این ماده ی B یک ماده ی بسیار بزرگ بوده که به ماکرومولکول معروف است ، که در واقع همان مولکول پلیمر ما یا بسپار ( یا همان بسپار پاره ی ما ) می باشد . گاهی ممکن است در بعضی از واکنشهای پلیمریزاسیون محصول جانبی (محصول اضافی) داشته باشیم : که همان پلیمر وهمان محصول جانبی ماست.

 

شاخه‌های پلیمر

 

اولین قدم در زمینه صنعت پلاستیک توسط فردی به نام واسپاهیات انجام گرفت وی در تلاش بود ماده‌ای را به جای عاج فیل تهیه کند. وی توانست فرآیند تولید نیترات سلولز را زا سلولز ارائه کند. در دهه 1970 پلیمرهای‌هادی به بازار عرضه شدند که کاربرد بسیاری در صنعت رایانه دارند زیرا مدارها و ICهای رایانه‌ها از این مواد تهیه می‌شوند. و در سالهای اخیر مواد هوشمند پلیمری جایگاه تازه‌ای برای خود سنسورها پیدا کردند. پلیمرها را می‌توان از 7 دیدگاه مختلف طبقه بندی نمود. صنایع ، منبع ، عبور نور ، واکنش حرارتی ، واکنش‌های پلیمریزاسیون ، ساختمان مولکولی و ساختمان کریستالی.
از نظر صنایع مادر پلیمرها به چهار گروه صنایع لاستیک ، پلاستیک ، الیاف ، پوششی و چسب تقسیم بندی می‌شوند. اینها صنایع مادر در پلیمرها می‌باشند اما صنایع وابسته به پلیمر هم فراوان هستند مانند صنعت پزشکی در اعضای مصنوعی ، دندان مصنوعی ، پرکننده‌ها ، اورتوپدی از پلیمرها به وفور استفاده
می‌شود. پلیمرها از لحاظ منبع به سه گروه اصلی تقسیم بندی می‌شوند که عبارتند از پلیمرهای طبیعی ، طبیعی اصلاح شده و مصنوعی.

 

رزین

 

منابع طبیعی رزینها ، حیوانات ، گیاهان و مواد معدنی می‌باشد. این پلیمرها به سادگی شکل پذیر بوده لیکن دوام کمی دارند. رایج عبارتند از روزین ، آسفالت ، تار ، کمربا ، سندروس ، لیگنپین ، لاک شیشه‌ای می‌باشند. رزین‌های طبیعی اصلاح شده شامل سلولز و پروتئین می‌باشد سلولز قسمت اصلی گیاهان بوده و به عنوان ماده اولیه قابل دسترسی برای تولید پلاستیکها می‌باشد کازئین ساخته شده از شیر سرشیر گرفته ، تنها پلاستیک مشتق شده از پروتئین است که در عرصه تجارت نسبتا موفق است.

 

پلیمر مصنوعی

 

پلیمرهای مصنوعی را می‌توان از طریق واکنشهای پلیمریزاسیون بدست آورد. از مواد پلیمری می‌توان در تهیه پلاستیکها ، چسبها ، رنگها ، ظروف عایق ، مواد پزشکی بهره جست. پلاستیکها به تولید طرحهای جدید در اتومبیلها ، کامیونها ، اتوبوسها ، وسایل نقلیه سریع ، هاورکرافت ، قایقها ، ترنها ، آلات موسیقی ، وسایل خانه ، یراق آلات ساختمانی و سایر کاربردها کمک نموده‌اند در ادمه به بررسی کاربرد چندین پلیمر می‌پردازیم:

 

 

پلیمرهای بلوری مایع (LCP)

 

این پلیمرها بتازگی در بین مواد پلاستیکی ظهور کرده است. این مواد از استحکام ابعادی بسیار خوب ، مقاومت بالا ، مقاومت در مقابل مواد شیمیایی توام با خاصیت سهولت شکل پذیری برخوردار هستند. از این پلیمرها می‌توان به پلی اتیلن با چگالی کم قابل مصرف در ساخت عایق الکتریکی ، وسایل خانگی ، لوله و بطریهای یکبار مصرف ، پلی اتیلن با چگالی بالا قابل مصرف در ظروف زباله‌ها بطری ، انواع مخازن و لوله برای نگهداری و انتقال سیالات ، پلی اتیلن شبکهای ، پلی پروپیلن قابل مصرف در ساخت صندوق ، قطعات کوچک خودرو ، اجزای سواری ، اسکلت صندلی ، اتاقک تلویزیون و... اشاره نمود.

 

پلیمرهای زیست تخریب پذیر

 

این پلیمرها در طی سه دهه اخیر در تحقیقات بنیادی و صنایع شیمیایی و دارویی بسیار مورد توجه قرار گرفته‌اند. زیست تخریب پذیری به معنای تجزیه شدن پلیمر در دمای بالا طی دوره مشخص می‌باشد که بیشتر پلی استرهای آلیفاتیک استفاده می‌شود. از این پلیمرها در سیستم‌های آزاد سازی دارویی با رهایش کنترل شده یا در اتصالات ، مانند نخ‌های جراحی و ترمیم شکستگی استخوانها و کپسولهای کاشتی استفاده می‌شود.

 

پلی استایرن

 

این پلیمر به صورت گسترده‌ای در ساخت پلاتیکها و رزینهایی مانند عایقها و قایقهای فایبر گلاس در تولید لاستیک ، مواد حد واسط رزینهای تعویض یونی و در تولید کوپلیمرهایی مانند ABS و SBR کاربرد دارد. محصولات تولیدی از استایرن در بسته بندی ، عایق الکتریکی - حرارتی ، لوله‌ها ، قطعات اتومبیل ، فنجان و دیگر موادی که در ارتباط با مواد غذایی می‌باشند ، استفاده می‌شود.

 

لاستیکهای سیلیکون

 

مخلوط بسیار کانی- آلی هستند که از پلیمریزاسیون انواع سیلابها و سیلوکسانها بدست می‌آیند. با اینکه گرانند ولی مقاومت قابل توجه در برابر گرما به استفاده منحصر از این لاستیکها در مصارف بالا منجر شده است. این ترکیبات اشتغال پذیری نسبتا پایین ، گرانروی کم در درصد بالای رزین ، عدم سمیت ، خواص بالای دی الکتریک ، حل ناپذیری در آب و الکلها و ... دارند به دلیل همین خواص ترکیبات سیلیکون به عنوان سیال هیدرولیک و انتقال گرما ، روان کننده و گریس ، دزدگیر برای مصارف برقی ، رزینهای لایه کاری و پوشش و لعاب مقاوم در دمای بالا و الکلها و مواد صیقل کاری قابل استفاده‌اند. بیشترین مصرف اینها در صنایع هوا فضاست.

 

لاستیک اورتان

 

این پلیمرها از واکنش برخی پلی گلیکولها با دی ایزوسیاناتهای آلی بدست می‌آیند. مصرف اصلی این نوع پلیمرها تولید اسفنج انعطاف پذیر و الیاف کشسان است. در ساخت مبلمان ، تشک ، عایق - نوسانگیر و ... بکار می‌روند. ظهور نخ کشسان اسپندکس از جنش پلی یوره تان به دلیل توان بالای نگهداری این نوع نخ زمینه پوشاک ساپورت را دگرگون کرده است.  

 

 

    دیدی بر اندازه ی پلیمرها :

 

ماکرومولکولها با وزن تقریبی چند ده هزار تا چند صد هزار می باشند و این امر بیانگر این مطلب است که تعداد زیادی اتم در ساختار ماکرومولکولها شرکت می کنند . برای بررسی اندازه یک ماکرومولکول به بررسی سرعت تولید آن ماکرومولکول می پردازند . در کل هر واکنش پلیمری از سه بخش کلی مرحله یآغازین ، مرحله یانتشار و مرحله ی پایانی تشکیل شده است . سرعت انجام مرحله ی آغازین عملا در اندازه ماکرومولکولها نقشی ندارند . تنها با بررسی سرعت مراحل انتشار و پایانی پی به اندازه مولکول می برند . معمولا مرحله آغازین بسیار کند و با انرژی فعال سازی بالایی همراه می باشد ؛ ولی دو مرحله ی دیگر ( انتشار و پایانی ) از انرژی فعال سازی کمی برخوردار بوده و این دو مرحله ی انتشار و پایانی دو حالت را در چگونگی میزان وزن ماکرومولکول به وجود می آورند و آن دو حالت بدین گونه می باشد که اگر سرعت مرحله پایانی از سرعت مرحله ی انتشار بیشتر باشد ، ماکرومولکول تولیدی نسبت به دگر ماکرومولکول ها از اندازه ی کوچکتری ( و به واسطه ی آن جرم مولکولی کمتری ) برخوردار می باشد و اگر سرعت مرحله ی انتشار از سرعت مرحله ی پایانی بیشتر باشد معمولا ماکرومولکول از جرم مولکولی تقریبا بالایی برخوردار است .

دلیل این امر نیز بسیار ساده و از لحاظ ذهنی قابل قبول است . زیرا هرچه سرعت مرحله ی انتشار که در واقع همان مرحله ی ترکیب شدن مولکول های اولیه ، یعنی مونومرها (مونو+مر=تک+قسمت، که در زبان فارسی واژه ی تکپار "تک+پار" به معنای تک پاره و تک قسمت برای آن انتخاب شده است9 می باشد از سرعت مرحله پایانی؛یعنی همان مرحله قطع واکنش بیشتر باشد مولکول می تواند واکنشهای  بیشتری را پذیرا باشد و بر جرم خود بیفزاید.

 

توضیح :

 

معمولا در بساری از کتابهای مربوط به تکنولوژی پلیمرها به بررسی انواع گوناگون واکنش های پلیمریزاسیون می پردازند ولی ما در اینجا برای اینکه بر میزان سادگی کتاب بیفزایم از این امر خودداری کرده ایم و تنها به ذکر یک نکته اکتفا می کنیم و آن نکته این است که برای تولید پلیمرها روشهای مختلفی موجود است و از مکانیزم های خاصی نشات گرفته اند. این مکانیزم ها در واقع همان تفاوتهای بین روهای ساخت پلیمرها را مشخص می کند و تفاوت در روشهای ساخت از ساختمان مونومرها (تک پارها ) و همچنین از خواست ما از اینکه ماکرومولکول ما دارای چه خصوصیاتی باشد ناشی می شود .

 

    نکته ی جالب :

نکته ی جالب در صنعت ماکرومولکول ها این است که دیگر به ماکرومولکولها به دید شیمیایی نگاه نمی کنند بلکه بیشتر دانشمندان دوستدار خواص فیزیکی آنها هستند .

مثلا با دیدی بر خواص فیزیکی پلیمرهای هدایت الکتریکی تلاش شده است که از آنها برای پوشش دادن جنگ افزارهای نظامی مثلا هواپیماهای نظامی در جهت شناسایی نشدن این جنگ افزارها توسط رادارهای دشمن استفاده گردد .

 

 

پلیمریزاسیون

 

بررسی روشهای بهینه سازی تهیه پلی ایتلن ترفتالات بااستفاده از منابع داخلی

در پروژهء حاضر روشهای تهیه پلی استرها از دیدگاه مکانیسم واکنشها، شرایط مورد نیاز و عوامل موثر برپلیمریزاسیون و همچنین فرآیندهای صنعتی تولید این ترکیبات مهم مورد بررسی قرار گرفته اند و پلی اتیلن ترفتالات (PET) به عنوان یک پلی استر معمول المصرف تحت شرایط متفاوت در مقیاس آزمایشگاهی تهیه شده است. در تهیه (PET) از دی متیل ترفتالات (DMT) واتیلن گلیکول (EG) بعنوان مونومر استفاده شده و پلیمریزاسیون در غیاب حلال و در حالت مذاب در طی دو مرحله ترانس استریفیکاسیون و تراکم انجام گرفته است. برای مرحله اول انواع کاتالیزورهای قلیایی از جمله استات ها و ترفتالاتهای فلزی مورد آزمایش قرار گرفته اند و در مرحله دوم جهت تراکم مونومرها و الیگومرهای اولیه، افزایش جرم مولکولی پلیمر و خروج مازاد اتیلن گلیکول، کاتالیزورهای فلزی مانند اکسیدهای آنتیموان، بیسموت ، روی و غیره مورداستفاده قرار گرفته است. تعمیم نتایج حاصل از روشهای آزمایشگاهی و گسترش آنها در حد پارامترهای تولید نیمه صنعتی و صنعتی می تواند به عنوان اولین قدم در بهبود شرایط تولید وامکان طراحی واحدهای ساده تر و موثرتر در داخل کشور موثر واقع شود. نتایج مقایسه شده از اجرای مرحله اول تحت جریان ازت و مرحله دوم در دمای بالا و خلاء در شرایط متغیر از نظر نوع کاتالیزورها نشان داده است که می توان با تغییر نوع و غلظت این ترکیبات راندومان محصول، جرم مولکولی و کیفیت ظاهری پلیمرهای حاصل را اصلاح نمود. تاثیر افزایش برخی مواد اصلاح کننده که اثر خود را از طریق حذف کاتالیزورهای مرحله اول و یا ورود در زنجیرهای اصلی و جانبی پلیمر اعمال می کنند، مورد مطالعه قرار گرفته است . ساختمان پلیمرهای حاصل از روشهای مختلف از طریق تعیین نقطه ذوب و طیفهای NMR,IR تایید شده وویسکوزیته محلولهای حاصل از آنها تعیین شده است. جرم مولکولی پلیمرها به روش GPC اندازه گیری و آزمایشهای تجزیه ای از قبیل اشتعال و تعیین گروههای انتهایی در حد مقدور انجام گرفته اند. نتایج حاصل حاکی از این است که می توان PET را بنحو مطلوبی از واکنش DMT با EG مازاد (نسبت مولی 5/1 برابر) در حضور ترفتالاتهای قلیایی و مدیفایرهای فسفردار (با نسبت وزنی حدود %5/0) و همچنین کاتالیزورهای فلزی موثر مانند اکسید آنتیموان در طی دو مرحله متوالی تهیه نمود.

بهمزدن مداوم و عبور یک گاز بی اثر باعث تسریع خروج محصولات جانبی مانند متانول و اعمال دما و فشار مناسب باعث تقطیر EG اضافی و افزایش جرم مولکولی می گردد. ترکیبات فسفردار محصولات جانبی مضر مانند استالدهید و استال ها را کاهش می دهد و به حذف بقایای کاتالیزوری مرحله اول کمک می کند. جایگزینی استات ها با ترفتالاتهای فلزی نیز کاتالیز واکنشهای پارازیت در مرحله دوم را تحت الشعاع قرار می دهد.  

 

منابع ا ستفاده شده

1.                         مهندسی پلاستیک تالیف آر. جی. کرافورد ، ترجمه مهرداد کوکبی

2.                         پلاستیکهای صنعتی تالیف مهندس شیرین خسروی

3.                         مواد پلاستیک تالیف حسین امیدیان

 

+ نوشته شده در  جمعه 10 آبان1387ساعت 2:40  توسط مدیر وبلاگ |  پیام به مدیر وبلاگ
 



تصویر
ساختمان پلیمر

تمامی پلیمرها در محدوده‌ای از دما ، خصلت ذاتی خود را بروز می‌دهند. ولی هر پلیمری در دمای معین ، تبدیل به یک جسم سخت و شکننده می‌شود، بطوریکه برای پلی اتیلن 40- تا 60- درجه سانتی‌گراد ، برای پلی پروپلین صفر درجه سانتی‌گراد ، برای پلی‌متاکریلات 90 درجه‌سانتی‌گراد ، برای PVC هم 85 درجه سانتی‌گراد می‌باشد. به عبارتی PVC در بالاتر از 85 درجه سانتی‌گراد خصلت پلاستیکی دارد، درصورتیکه در پایین‌تر از 85 درجه سانتی‌گراد ، یک جسم سخت و شکننده است.

تمامی مواد پلیمری در یک محدوده ای از دما در یک دمای مشخص ، ناگهان برخی خواص فیزیکی‌شان تغییر پیدا می‌کند. از آن جمله پلیمر هر خصلتی داشته باشد، پلیمر به یک جسم سخت و شکننده تبدیل می‌شود که آن را "دمای ترانزیسیون شیشه‌ای" می‌نامند.

حرکات ماکروبرونین

موقعی که پلیمری را به حالت مذاب در می‌آوریم، زنجیرها در پهلوی هم آزادانه حرکت می‌کنند که آن را حرکات ماکروبرونین می‌نامند. اگر با کاهش دما ، حرکات ماکروبرونین را متوقف کنیم، جسم ویسکوز سیال به یک حالت فیزیکی جامد تبدیل می‌شود. ولی بعد از این مرحله ، قطعاتی از زنجیره‌ها در لابلای فضای خالی بین زنجیره‌ها حرکت می‌کنند که همان حرکات ماکروبرونین هستند.

تعبیر دمای ترانزیسیون شیشه‌ای

اگر با کاهش دما حرکات ماکروبرونین را متوقف کنیم، در این لحظه و در دمای مشخصی ، پلیمر تبدیل به جسم سخت و شکننده می‌شود که همان دمای ترانزیسیون شیشه‌ای است. دمای ترانزیسیون شیشه‌ای _Tg_ ، یکی از مختصات فیزیکی پلیمرهاست.

دستگاه اندازه‌گیری Tg

دستگاهی که دمای ترانزیسیون شیشه‌ای _Tg_ را برای ما اندازه‌گیری می‌کند، D.S.C نام دارد که مخفف Difransial Scaning Colorymetery ، کالریمتری پوشش تفاضلی ، می‌باشد.

تصویر

تعبیر دمای ذوب در پلیمرها

از آنجاییکه پلیمرها ، کلا از 3 حالت تشکیل شده‌اند (بلور ، بلورچه ، آمورف یا بی‌شکل) ، موقعیکه پلیمر حرارت داده می‌شود، ابتدا بلورچه‌ها حرارت را دریافت می‌کنند. با بالا رفتن دما ، بلورها شروع به بی‌نظم شدن می‌کنند و در یک لحظه ، پلیمر جامد به یک مایع ویسکوز تبدیل می‌شود. (می‌دانیم که وقتی نیروهای بین مولکولی را تضعیف می‌کنیم، ذوب اتفاق می‌افتد.)

دمای ذوب در ترموست‌ها

پلی ایزوپرن 4و1 سیس ، "الاستومر" است که به شکل بلوری نیست و آمورف است. بنابراین در این گونه پلیمرها نقطه ذوب مفهوم ندارد. همینطور در PF خطی و PF کراسلینگ مفهوم ندارد.

دمای ترانزیسیون شیشه‌ای در انواع پلیمرها

دمای ترانزیسیون شیشه‌ای در انواع پلیمرها از نوع آمورف ، بلوری ، الاستیک ، پلاستیک و ... وجود دارد. حتی در یک پلیمر سه‌بعدی یا کراسلینگ هم ، دمای ترانزیسیون شیشه‌ای (Tg) وجود دارد.

نقطه نرم شدن

در الاستیک‌ها یا الاستومرها ، نقطه ذوب وجود ندارد، ولی نقطه نرم شدن وجود دارد. وقتی الاستومری را حرارت می‌دهیم، در اثر حرارت ، پلیمر نرم می‌شود و سپس ، با بالا رفتن دما با مواد افزودنی ، فرایند پخت صورت می‌گیرد. در الاستیک‌ها برخلاف پلاستیک‌ها قالب‌گیری وجود ندارد، چون پلاستیک‌ها سیال می‌شوند.
+ نوشته شده در  پنجشنبه 2 آبان1387ساعت 16:11  توسط مدیر وبلاگ |  پیام به مدیر وبلاگ
 

دید کلی

پلیمرها یا بسپارها ، ترکیباتی هستند که از بهم پیوستن چندین مولکول منومر بوجود می‌آیند. پلیمرها را به طرق مختلف طبقه‌بندی می‌کنند. یکی از روشهای تقسیم بندی پلیمرها ، تقسیم بندی از نظر خواص است. پلیمرها از نظر خواص به سه دسته عمده تقسیم بندی می‌شوند.

تصویر
پلاستیکها ، دسته‌ای از پلیمرها

توموپلاستها

ترموپلاستها ، پلیمرهایی هستند که در اثر فشار ، تغییر شکل (Deformation) می‌دهند و بعد از حذف نیروی خارجی ، این تغییر شکل ، همچنان باقی می‌ماند. به عبارت دیگر این پلیمرها ، خاصیت پلاستیسیتی دارند. این پلیمرها در اثر گرما بتدریج نرم می‌شوند. با افزایش دما به حالت مذاب در می‌آیند. بعد از حذف گرما به حالت فیزیکی جامد خود تبدیل می‌شوند. این خصلت ، کاربرد صنعتی این نوع پلیمرها را تضمین می‌کند.

اگر ترموپلاستیکی را به صورت پودر یا حلقه‌های کوچک در آوریم و سپس حرارت دهیم، ابتدا نرم و سپس مذاب و ویسکوز می‌شود و اگر آنرا در قالب بگیریم، شکل قالب را به خود می‌گیرد و این علت کاربرد بسیار زیاد این مواد است.

الاستومرها

الاستومرها ، پلیمرهایی هستند که در اثر نیروی خارجی تغییر شکل پیدا می‌کنند. بعد از حذف نیرو ، تغییر شکل از بین می‌رود و دوباره به حالت اولیه باز می‌گردند. این پلیمرها در اثر گرما ، نرم می‌شوند، ولی برخلاف ترموستها (ترموپلاستیکها) به حالت ویسکوز یا مایع سیال در نمی‌آیند. موقعی که این پلیمرها در اثر حرارت نرم شدند، آنرا با اضافه کردن افزودنیهای مورد نیاز در داخل قالب پخت می‌کنند. عملیات پخت را Curing گویند.

تصویر
کلید و پریز برق ، از گروه ملامینها

ترموسیتینگها

این پلیمرها ، پلیمرهایی هستند که در اثر گرما نرم نمی‌شوند. بلکه با افزایش دما ، سختتر و محکمتر می‌شوند و با بالا رفتن بیشتر دما ، درجه سختی آنها افزایش می‌یابد. این پلیمرها برای قالب گیری ، درون قالب ریخته می‌شوند و قالب گیری می‌شوند. گاهی ممکن است فرایند پلیمریزاسیون نیز همزمان درون قالب انجام شود و بعد از پلمریزاسیون ، پلیمر شکل قالب را به خود می‌گیرد.

مقایسه ترموستها ، الاستومرها و ترموسیتینگها از نظر ساختمانی

ترموستها و الاستومرها ، پلیمرهای یک‌بعدی هستند. بنابراین در حلال‌های مرسوم شیمیایی که بسته به نوع ساختمان پلیمر تعیین می‌شود، حل می‌گردند. اما ترموسیتینگها ، جزو پلیمرهای سه بعدی یا مشبک می‌باشند و بنابراین در هیچ حلالی حل نمی‌شوند.
+ نوشته شده در  پنجشنبه 2 آبان1387ساعت 16:10  توسط مدیر وبلاگ |  پیام به مدیر وبلاگ
 

مقدمه

تصور جهان پیشرفته کنونی بدون وجود مواد پلیمری مشکل می‌باشد. امروزه این مواد جزیی از زندگی ما شده‌اند و در ساخت اشیای مختلف ، از وسایل زندگی و مورد مصرف عمومی تا ابزار دقیق و پیچیده پزشکی و علمی بکار می‌روند. کلمه پلیمراز کلمه یونانی (Poly) به معنی چند و (Meros) به معنای واحد با قسمت بوجود آمده است. در این میان ساختمان پلیمرها با مولکولهای بسیار دراز زنجیر گونه با ساختمان فلزات کامل متفاوت است. این مولکولهای بلند از اتصال و بهم پیوستن هزاران واحد کوچک مولکولی مرسوم به منومر تشکیل شده‌اند. مواد طبیعی مانند ابریشم ، لاک ، قیر طبیعی ، کشانها و سلولز ناخن دارای چنین ساختمان مولکولی هستند.

البته تا اوایل قرن نوزدهم میلادی توجه زیادی به مواد پلیمری نشده بود بومیان آمریکای مرکزی از برخی درختان شیرابه‌هایی استخراج می‌کردند که شیرابه بعدها نام لاتکس به خود گرفت. در سال 1829 ، دانشمندان متوجه شدند که در اثر مخلوط کردن لاتکس طبیعی با سولفور و حرارت دادن آن ماده‌ای قابل ذوب ایجاد می‌شود که می‌توان از آن محصولات مختلفی نظیر چرخ ارابه یا توپ تهیه کرد. در سال 1909 میلادی فنل فرمالدئید موسوم به باکلیت ساخته شد که در تهیه قطعات الکتریکی ، کلیدها ، پریزها و وسایل مصرف زیادی دارد.

در اثنای جنگ جهانی دوم موادی مثل نایلون پلی اتیلن ، اکریلیک موسوم به پرسپکس به دنیا عرضه شد. نئوپرن را شرکت دوپان در سال 1932 ابداع و به شکل تجارتی ابتدا با نام دوپرن و بعدها نئوپرن عرضه کرد.

شاخه‌های پلیمر

اولین قدم در زمینه صنعت پلاستیک توسط فردی به نام واسپاهیات انجام گرفت وی در تلاش بود ماده‌ای را به جای عاج فیل تهیه کند. وی توانست فرآیند تولید نیترات سلولز را زا سلولز ارائه کند. در دهه 1970 پلیمرهای‌هادی به بازار عرضه شدند که کاربرد بسیاری در صنعت رایانه دارند زیرا مدارها و ICهای رایانه‌ها از این مواد تهیه می‌شوند. و در سالهای اخیر مواد هوشمند پلیمری جایگاه تازه‌ای برای خود سنسورها پیدا کردند. پلیمرها را می‌توان از 7 دیدگاه مختلف طبقه بندی نمود. صنایع ، منبع ، عبور نور ، واکنش حرارتی ، واکنش‌های پلیمریزاسیون ، ساختمان مولکولی و ساختمان کریستالی.

از نظر صنایع مادر پلیمرها به چهار گروه صنایع لاستیک ، پلاستیک ، الیاف ، پوششی و چسب تقسیم بندی می‌شوند. اینها صنایع مادر در پلیمرها می‌باشند اما صنایع وابسته به پلیمر هم فراوان هستند مانند صنعت پزشکی در
اعضای مصنوعی ، دندان مصنوعی ، پرکننده‌ها ، اورتوپدی از پلیمرها به وفور استفاده می‌شود. پلیمرها از لحاظ منبع به سه گروه اصلی تقسیم بندی می‌شوند که عبارتند از پلیمرهای طبیعی ، طبیعی اصلاح شده و مصنوعی.

رزین

منابع طبیعی رزینها ، حیوانات ، گیاهان و مواد معدنی می‌باشد. این پلیمرها به سادگی شکل پذیر بوده لیکن دوام کمی دارند. رایج عبارتند از روزین ، آسفالت ، تار ، کمربا ، سندروس ، لیگنپین ، لاک شیشه‌ای می‌باشند. رزین‌های طبیعی اصلاح شده شامل سلولز و پروتئین می‌باشد سلولز قسمت اصلی گیاهان بوده و به عنوان ماده اولیه قابل دسترسی برای تولید پلاستیکها می‌باشد کازئین ساخته شده از شیر سرشیر گرفته ، تنها پلاستیک مشتق شده از پروتئین است که در عرصه تجارت نسبتا موفق است.

پلیمر مصنوعی

پلیمرهای مصنوعی را می‌توان از طریق واکنشهای پلیمریزاسیون بدست آورد. از مواد پلیمری می‌توان در تهیه پلاستیکها ، چسبها ، رنگها ، ظروف عایق ، مواد پزشکی بهره جست. پلاستیکها به تولید طرحهای جدید در اتومبیلها ، کامیونها ، اتوبوسها ، وسایل نقلیه سریع ، هاورکرافت ، قایقها ، ترنها ، آلات موسیقی ، وسایل خانه ، یراق آلات ساختمانی و سایر کاربردها کمک نموده‌اند در ادمه به بررسی کاربرد چندین پلیمر می‌پردازیم:

پلیمرهای بلوری مایع (LCP)

این پلیمرها بتازگی در بین مواد پلاستیکی ظهور کرده است. این مواد از استحکام ابعادی بسیار خوب ، مقاومت بالا ، مقاومت در مقابل مواد شیمیایی توام با خاصیت سهولت شکل پذیری برخوردار هستند. از این پلیمرها می‌توان به پلی اتیلن با چگالی کم قابل مصرف در ساخت عایق الکتریکی ، وسایل خانگی ، لوله و بطریهای یکبار مصرف ، پلی اتیلن با چگالی بالا قابل مصرف در ظروف زباله‌ها بطری ، انواع مخازن و لوله برای نگهداری و انتقال سیالات ، پلی اتیلن شبکهای ، پلی پروپیلن قابل مصرف در ساخت صندوق ، قطعات کوچک خودرو ، اجزای سواری ، اسکلت صندلی ، اتاقک تلویزیون و... اشاره نمود.

پلیمرهای زیست تخریب پذیر

این پلیمرها در طی سه دهه اخیر در تحقیقات بنیادی و صنایع شیمیایی و دارویی بسیار مورد توجه قرار گرفته‌اند. زیست تخریب پذیری به معنای تجزیه شدن پلیمر در دمای بالا طی دوره مشخص می‌باشد که بیشتر پلی استرهای آلیفاتیک استفاده می‌شود. از این پلیمرها در سیستم‌های آزاد سازی دارویی با رهایش کنترل شده یا در اتصالات ، مانند نخ‌های جراحی و ترمیم شکستگی استخوانها و کپسولهای کاشتی استفاده می‌شود.

پلی استایرن

این پلیمر به صورت گسترده‌ای در ساخت پلاتیکها و رزینهایی مانند عایقها و قایقهای فایبر گلاس در تولید لاستیک ، مواد حد واسط رزینهای تعویض یونی و در تولید کوپلیمرهایی مانند ABS و SBR کاربرد دارد. محصولات تولیدی از استایرن در بسته بندی ، عایق الکتریکی - حرارتی ، لوله‌ها ، قطعات اتومبیل ، فنجان و دیگر موادی که در ارتباط با مواد غذایی می‌باشند ، استفاده می‌شود.

لاستیکهای سیلیکون

مخلوط بسیار کانی- آلی هستند که از پلیمریزاسیون انواع سیلابها و سیلوکسانها بدست می‌آیند. با اینکه گرانند ولی مقاومت قابل توجه در برابر گرما به استفاده منحصر از این لاستیکها در مصارف بالا منجر شده است. این ترکیبات اشتغال پذیری نسبتا پایین ، گرانروی کم در درصد بالای رزین ، عدم سمیت ، خواص بالای دی الکتریک ، حل ناپذیری در آب و الکلها و ... دارند به دلیل همین خواص ترکیبات سیلیکون به عنوان سیال هیدرولیک و انتقال گرما ، روان کننده و گریس ، دزدگیر برای مصارف برقی ، رزینهای لایه کاری و پوشش و لعاب مقاوم در دمای بالا و الکلها و مواد صیقل کاری قابل استفاده‌اند. بیشترین مصرف اینها در صنایع هوا فضاست.

لاستیک اورتان

این پلیمرها از واکنش برخی پلی گلیکولها با دی ایزوسیاناتهای آلی بدست می‌آیند. مصرف اصلی این نوع پلیمرها تولید اسفنج انعطاف پذیر و الیاف کشسان است. در ساخت مبلمان ، تشک ، عایق - نوسانگیر و ... بکار می‌روند. ظهور نخ کشسان اسپندکس از جنش پلی یوره تان به دلیل توان بالای نگهداری این نوع نخ زمینه پوشاک ساپورت را دگرگون کرده است.

منابع مورد استفاده شده

  1. مهندسی پلاستیک تالیف آر. جی. کرافورد ، ترجمه مهرداد کوکبی
  2. پلاستیکهای صنعتی تالیف مهندس شیرین خسروی
  3. مواد پلاستیک تالیف حسین امیدیان
+ نوشته شده در  پنجشنبه 2 آبان1387ساعت 16:4  توسط مدیر وبلاگ |  پیام به مدیر وبلاگ
 
تهیه پلیمر خطی فنل فرمالدئید و تبدبل آن به پلیمر 3 بعدی در محیط اسیدی و بازی

 

تهیه رزول

در لوله آزمایش یک گرم فنل را در 2ml محلول آبی فرمالین حل کنید و به این مخلوط تقریبآ 2ml محلول آبی رقیق آمونیاک 2M اضافه نمایید . سپس چند دانه سنگ جوش را درون لوله بیندازید . لوله را به پایه تقطیر متصل نمائید، سپس لوله را با استفاده از یک چراغ بونزن به آرامی حرارت دهید تا مخلوط به رنگ سفید شیری در آید . سپس حرارت دادن را متوقف کنید در این حالت باید مخلوط صورت دو لایه ای جدا از هم در آمده باشد که لایه زیرین به صورت ویسکوز زرد رنگ در آید و لایه‌ی بالایی نیز سفید رنگ باشد. که بیشتر آن به صورت آب است . با استفاده از یک قطره چکان یا پی‌پت لایه بالایی را بردارید . مایع زیرین همان رزول می باشد که حاوی مقادیر جزیی آب است . با حرارت دادن این مایع وسکوز در داخل لوله آزمایش و یا بر روی سطح شیشه ساعت (ترجیحآورقه آلومینیومی) رزین به رنگ زرد تیره در آمده قل می‌زند و نهایتآ به صورت جامد شیشه ای و قرمز قهوه‌ای رنگ تبدیل می‌شود. می‌توان حلالیت این رزین را قبل از حرارت دادن و بعد از آن به وسیله حلال‌های اتانول و استون و تولوئن بررسی و مقایسه کرد .

+ نوشته شده در  سه شنبه 24 مهر1386ساعت 11:46  توسط مدیر وبلاگ |  پیام به مدیر وبلاگ
 
این ترکیبات از پلی کندانساسیون (Polycondensation) دی اسیدها با دی ال ها به دست می آیند. مثلا از ترکیب اسید ترفتالیک و گلیکول که از فرآورده های نفتی می باشند طبق واکنش زیر پلی مری به دست می آید که الیاف آن بسیار مرغوب است و در انگلستان به آن تریلن(Terylene) و در فرانسه ترگال(Tergal) گفته می شود.

 

 

لازم به تذکر است در صورتی که دی اسید و دی ال کاملا به طور استئوکیومتری انتخاب گردیده باشد پلی کندانسای حاصله در خاتمه عمل دارای یک عامل اسیدی و یک عامل الکلی خواهد بود.

 

پلی استرها از متراکم شدن دی اسیدها با دی‌الها یا پلی‌الها بدست می‌آیند. دی اسیدها می‌توانند آلیفاتیک یا آروماتیک باشند. تهیه پلی استر ، جزو "پلیمریزاسیون مرحله‌ای یا تراکمی" می‌باشد. اگر در جریان واکنش پلیمریزاسیون ، بهمراه پلیمر ، مواد دیگری با اجرام مولکولی پایین تشکیل شوند و تغییر در ترکیب عنصری ساختمانی پلیمر حاصل شود، پلیمریزاسیون از نوع مرحله‌ای یا تراکمی بوده و منومرهای که بدین ترتیب پلیمریزه می‌شوند، حاوی دو و یا چند گروه عاملی‌اند.

 

اگر چه فرم های مختلفی برای پلی استرها وجود دارد، ولی معمولا عبارت پلی استر برای پلی اتیلن ترفتالات  (PET) استفاده می شود. فرم های دیگر پلی استر که به صورت طبیعی وجود دارند را می توان در پوسته خارجی گیاهان یافت که کیفیت آن ها به خوبی پلی استرهای مصنوعی (مانند پلی کربنات ها) می باشد.

 پلی استرها به فرم های بیشماری تشکیل می شوند. به عنوان مثال پلی استری چون یک ترموپلاستیکThermoplastic)) ممکن است گرم شود و به فرم های مختلفی مانند نخ ها (Fibers)، کاغذها Sheets)) و اشکال سه بعدی (Three Dimensional Shapes) در بیاید.

 

 

 

 

پلی استرها نیز برای تولید بطری ها (Bottles)، فیلم ها (Films)، تارپولین(Tarpaulins)، نمایش دهنده کریستال های مایع (Liquid Crystal Displays)، هولوگرام ها، صافی ها (Filters)، لایه های عایق (Dielectric Film) و ... استفاده می شود.

 

(نمای نزدیک از یک پارچه پلی استری)

 

برای تهیه استرها می توان از واکنش یک اسید آلی(مانند استیک اسید) با یک الکل(اتیل الکل) در مجاورت کاتالیزگرهای اسیدی(سولفوریک اسید) استفاده کرد. این واکنش را استری شدن می گویند.

بوی خوشایند بسیاری از میوه ها و گل ها به علت وجود نوعی استر در آنها است. روغن ها و چربی های نباتی و جانوری نیز استر هستند. این استرها از واکنش اسیدهای چرب(اسیدهایی که در مولکول خود 16 یا 18 اتم کربن دارند) با گلیسرول یا گلیسیرین(الکل سه عاملی) به وجود آمده اند. اسیدهای چرب ممکن است سیر شده(مانند پالمیتیک اسید و استئاریک اسید) یا سیر نشده(مانند اولئیک اسید) باشند(اولئیک اسید در مولکول خود دارای 18 اتم کربن و یک پیوند دوگانه در میانه زنجیر است). اگر اسید چرب موجود در مولکول استر سیرنشده باشد، استر مورد نظر را روغن می نامند.روغن ها( استرهای سیرنشده) زودتر از چربی ها (استرهای سیرشده) در برابر هوا فاسد می شوند. از این رو، روغن ها را در برابر کاتالیزگر نیکل با هیدروژن واکنش می دهند(هیدروژن دار می کنند) تا دوام بیشتری داشته باشند.

اگر روغن ها و چربی ها را با محلول سدیم هیدروکسید گرم کنند، به صابون(نمک سدیم اسیدهای چرب) و گلیسرول تبدیل می شوند. این عمل را صابونی شدن می نامند.  

 

منابع :

1) کتاب پتروشیمی - تالیف دکتر مرتضی خسروی - انتشارات دانشگاه تهران

2) www.daneshnameh.roshd.ir

3) http://en.wikipedia.org/wiki/Polyester

+ نوشته شده در  سه شنبه 24 مهر1386ساعت 11:42  توسط مدیر وبلاگ |  پیام به مدیر وبلاگ
 
پلی استیرن ( یونولیت )

 

یونولیت یا پلی‌استیرن (Polystyrene) که در ایران با نام‌ تجاری پلاستوفوم هم شناخته می‌شود، نوعی پلیمر سفید رنگ و عایق رطوبت و صدا و حرارت است که از فرایندهای پتروشیمی تهیه می‌شود. این ماده اولین بار توسط آلمان نازی در جنگ جهانی دوم برای ساخت پل‌های شناور روی آب ساخته شد.

مونومر این پلیمر استیرن است. پلی استیرن ویژگی بلوری ندارد و بنابرین بسیار شفاف است. تراکم حاقه های بنزنی متصل به زنجیر اصلی درشت مولکول مانع نظم ساختاری گشته و باعث مس شود پلی استیرن ماهیتا بی شکل باشد.با توجه به اینکه دمای گذار شیشه ای شدن پلی استیرن خیلی بالاتر از دمای معمولی است پلاستیک مفیدی است. این ویژگی باعث می شود که پلاستیک فوق العاده سخت و کمی شکننده باشد.

این پلی مر سخت

, شکننده , شفاف و صیقل است و چگالی ان حدود 1.09 - 1.04 g/ml است. نور معمولی را تا حدود 90 درصد از خود عبور می دهد و ماده مناسبی جهت تهیه شیشه مصنوعی و ویترین ها در فضای بسته است.

روش تهیه :

مخلوطی از 22 میلی لیتر اب مقطر و 0.36 میلی لیتر محلول سدیم فسفات 10% و 0 میلی لیتر امونیاک غلیظ را در بالن بریزید و بر روی هم زن مغناطیسی قرار دهید و با سرعت 100 - 60 دور در دقیقه هم بزند.

6 میلی لیتر اب مقطر و 0.75 میلی لیتر کلسیم کلرید 10% را به تدریج در طول 30 دقیقه به وسیله قیف جداکننده به بالن اضافه کنید. این غمل باعت تشکیل کلسیم فسفات می شود که برای پخش مونومر در محیط به کار می رود. پس از اضافه کردن این مخلوط را داخل حمام اب 90 درجه سانتیگراد بگذارید و دمای بخاری و سرعت مگنت را تا انتهای واکنش ثابت نگه دارید. به 10 میلی لیتر مونومراسیون تقطیر شده 0.4 گرم بنزوئیل پروکسید اضافه کنید و پس از حل شدن این مخلوط را به وسیله قیف جداکننده در 10 دقیقه به مخلوط اضافه کنید. پس از دو ساعت پلی استیرن حاصل را روی قیف بوخنر صاف کنید و پس از شستشو با اب یا کلریدریک اسید 2% در اتو 40 درجه سانتیگراد خشک کنید.

 

+ نوشته شده در  سه شنبه 24 مهر1386ساعت 11:26  توسط مدیر وبلاگ |  پیام به مدیر وبلاگ
 
این روش برای تجزیه کمی و کیفی اجسامی که فعالیت نوری دارند به کار می رود. نور سفید در تمام جهات ارتعاش دارد و اگر از اجسام Polaroid مانند بعضی مواد پلاستیکی یا بلورهای طبیعی مانند کلسیت که فرمول آنها CaCO3 است عبور کند به دو اشعه تقسیم می شود. چون سرعت هر یک از دو اشعه در داخل بلور متفاوت است. در صورتی که بلور را در امتداد یکی از قطب ها با  یک زاویه مناسب برید و مجددا آن را با صمغی بنام کانادا بالسام بچسبانیم، جزئی که اشعه عادی نامیده می شود منعکس شده و خارج می شود. در صورتی که جزئی که اشعه غیرعادی (پلاریزه) نامیده می شود بدون شکست خارج می شود ارتعاش این نور در یک سطح و عمود بر جهت انتشار آن است این بلور را که نور پلاریزه ایجاد می کند، منشور نیکل نامیده می شود. اجسامی دارای فعالیت نوری هستند که در ساختمان مولکولی آنها کربن نا قرینه (یعنی اتم کربنی که به چهار گروه مختلف متصل باشد) وجود داشته باشد. این اتم کربن باعث نامتقارن شدن مولکول می شود و مولکول نمی تواند بر تصویر آینه ای خود منطبق باشد. اگر این اجسام در مسیر نور پلاریزه قرار بگیرند باعث چرخش نور پلاریزه می شوند در صورتی که جسم نور پلاریزه را در جهت عقربه ساعت بچرخاند ، راست گردان  (Dextrorotatory) می گویند و چنانچه در جهت عکس عقربه ساعت بچرخاند ، آن را چپ گردان  (Levorotatory) می گویند.
مقدار چرخش (الفا) با غلظت جسم (C) متناسب است. و یا می توان گفت نور پلاریزه وقتی از ترکیبات نامتقارن عبور کند، به علت پخش نامتقارن دانسیته الکترونی در مولکول، الکترونهای مولکول بطور نامتقارن بر نور پلاریزه اثر می گذارند و باعث چرخش آن حول محور انتشار می شوند. مولکولهائی که فعالیت نوری ندارند چون با پخش الکترونی متقارن مواجه هستند بر نور پلاریزه اثر ندارند.
ترکیباتی که تصویر آینه ای قابل انطباق نداشته باشند دارای ایزومر نوری هستند. دو ایزومر نوری یک زوج انانتیومر را تشکیل می دهند. که از نظر خواص فیزیکی و شیمیایی یکسان هستند و فقط در جهت چرخش نور پلاریزه اختلاف دارند. مخلوط مساوی دو انانتیومر که از نظر قدر مطلق یکسان ولی از نظر جهت مخالف هستند کاملا همدیگر را خنثی می کنند. چرخش حاصله صفر است به چنین مخلوطی راسمیک می گویند.

 

 

اجزاء و قسمتهای مختلف دستگاه پلاریمتر

1- منبع نور:
تولید کننده نور تک رنگ است، چون میدان چرخش با  طول موج تغییر می کند. لذا باید به عنوان منبع از یک تولید کننده نور تک رنگ استفاده کرد. معمولا از لامپ بخار سدیم (خط زرد D) استفاده می شود. لامپ جیوه هم ممکن است بکار برده شود. طول موج لامپ سدیم 589.3 A° لامپ جیوه °546 A

۲- شکاف( Slite) :
میزان نور رسیده به نمونه را تنظیم می کند.

3- عدسی:
نقش موازی کننده نور را دارد.

4- منشور نیکل :
 اولین منشور نیکل که پلاریزور نام دارد و نور را پلاریزه می کند.

5- سل نمونه:
استوانه ای شیشه ای است و جهت قرار دادن نمونه مورد آزمایش در داخل آن است طول آن ممکن است 1 ،  2 ، 3 ، 4  سانتیمتر باشد. (اگرحباب هوا داشت در برآمدگی سل باید قرار گیرد.)

6- منشور نیکل :
دومین منشور نیکل که آنالایزور(Analyzer) بعنوان تجزیه کننده است که با چرخاندن آن می توان نور پلاریزه را به حالت اول برگرداند و مقدارانحراف آن را بر حسب درجه از روی یک سطح دایره ای مدرج خواند.
در این حالت روشنائی دو نیم دایره ای که از عدسی چشمی ملاحظه می شود به یک اندازه خواهد بود.

7- عدسی چشمی و ردیاب (دتکتور):
معمولا از چشم انسان بعنوان ردیاب استفاده می شود. در دستگاههای پیشرفته فتوالکتریک هستند و تا 001/0 درجه را تعیین می کند.

پلاریمتر نیم سایه:
یک پلاریزور کوچک متحرک بنام نیکل نیم سایه بعد از پلاریزور قرار دارد که می توان آن را با چرخاندن طوری تنظیم نمود که مانع عبور نور شود. در این حالت نیمی از دایره ای که از عدسی چشمی ملاحظه می شود سیاه به نظر می رسد، بعد شدت نور هر دو نیم دایره را به وسیله چرخاندن آنالایزور مساوی تنظیم می کنیم. در این حالت دستگاه باید روی صفر باشد. با گذاشتن نمونه در مسیر نور، شدت روشنائی دو نیم دایره فرق می کند که بایستی با چرخاندن آنالیزور به حالت اول برگرداند و مقدار چرخش را که a نام دارد از روی درجات خواند.

 


چرخش ویژه (انحراف مخصوص) Specific rotation :

زاویه a به چند عامل بستگی دارد. که عبارتند از ماهیت ترکیب، غلظت یا دانسیته (برای مایعات) طول نمونه ای که باید نور از آن عبور کند (طول مسیر)، درجه حرارت، حلال، طول موج نور غلظت و طول مسیر اهمیت زیادی دارند چون تعداد متوسط مولکولهای فعال نوری تعیین می شوند.


مقدار چرخش مخصوص برای یک جسم تحت شرایط معین ثابت است.
لذا از آن می توان بعنوان یک ثابت فیزیکی مثل نقطه ذوب و نقطه جوش و غیره استفاده کرد. رابطه انحراف مخصوص با ازدیاد درجه حرارت برای مقدار معینی از نمونه تغییر می کند. برای تجزیه کمی با دانستن انحراف مخصوص یک جسم خالصی  که در جداولی برای °C 20=t داده شده و اندازه گیری a با استفاده از فرمولهای فوق مقدار C( غلظت) را می توان حساب کرد.
یکی از مهمترین کاربردهای  پلاریمتری در صنایع قند است. وقتی محلولی فقط حاوی ساکارز باشد، پس از تعیین زاویه چرخش a بوسیله پلاریمتر می توان غلظت آن را تعیین کرد. صفر پلاریمتر را بایستی با آب مقطر تنظیم نمود یا مقداری که دستگاه برای آب مقطر نشان می دهد را یادداشت کرد. یا می توان منحنی استاندارد برای a برحسب C رسم کرد. منحنی ممکن است خطی، سهمی یا هذلولی باشد. چرخش مولکولی یک جسم در درجه حرارت T و طول موج لاندا به صورت   نمایش داده می شود که با انحراف مخصوص با رابطه زیر  مربوط می شود که M وزن مولکول جسم است.


تغییرات چرخش مولکولی را طول موج نور پلاریزه ORD می گویند (Optical rotatory  dispersion)  که برای تشریح فرمول اجسامی که ساختمان پیچیده دارند به کار می رود.

+ نوشته شده در  سه شنبه 24 مهر1386ساعت 11:22  توسط مدیر وبلاگ |  پیام به مدیر وبلاگ
 

روش تهیه پلی وینیل استات

 

0.75 گرم پلی ونیل الکل را در یک بالن دو دهانه بریزید و 25 میلی لیتر اب بهان اضافه کنید. بالن را به مبرد وصل کنید و داخل حمام 90 درجه سانتیگراد بگذارید. محتویات بالن باید مرتب هم زده شود تا پلی وینیل الکل حل شود. بعد از حل شدن پلی ونیل و بر طرف شدن کف روی ان اولسی فایر یا پایدار کننده است. 0.2 گرم امونیم پرسولفات . 0.1 گرم سدیم استات را دقیقا وزن کرده و در 5 میلی لیتر اب مقطر حل کنید. این محلول را به عنوان محلول شماره دو در نظر بگیرید. 12 میلی لیتر وینیل استات را نیز به عنوان محلول شماره دو در نظر بگیرید. به هنگام اضافه کردن محلول شماره یک و دو دمای حمام را به 80 درجه سانتیگراد برسانید و به مدت 60 دقیقه دو محلول را متناوبا و قطره قطره به محتویات بالن اضافه می کنیم به طوری که ابتدا مونومر و بعد اغازگر ( ابتدا محلول شماره دو و بعد محلول شماره یک ). بعد از اینکه مونومر تمام شد حدود 5 دقیقه نیز اولسیون را هم بزنید و بعد سرد کنید.

 

                                                                                           

 

 

                                                                 

+ نوشته شده در  سه شنبه 24 مهر1386ساعت 11:21  توسط مدیر وبلاگ |  پیام به مدیر وبلاگ
 

دید کلی

اصولا هر کسی که سر رشته‌ای از شیمی دارد، فرق بین یک جسم ساده اورگانیک مانند بنزن و ... و یک جسم پلیمری را می‌داند. اولین و عمده‌ترین فرقی که بین این دو نوع ماده وجود دارد، جرم مولکولی آنهاست. پلیمرها جرم مولکولی بسیار بالا از 10000 تا چندین میلیون دارند. پس جرم مولکولی ، شاخص تمایز بین جسم ساده اورگانیک و اجسام پلیمری است.

تصویر

انواع پلیمرها

پلیمرها را به سه گروه عمده تقسیم می‌کنند:


  • بیوپلیمرها یا پلیمرهای طبیعی مانند سلولز ، نشاسته ، پروتئینها و ...

  • پلیمرهای معدنی مانند الماس ، گرافیت ، اکثر اکسیدهای فلزی و ...

  • پلیمرهای سنتزی پلیمرهایی هستند که منشا آنها عموما مونومرهایی از نفت خام و قطران زغال سنگ است و ما با انجام فرآیندهایی ، پلیمرهای بسیار مفید می‌سازیم که امروزه زندگی بدون آنها ممکن نیست. با این فرایندها بطور کلی آشنا می‌شویم.

پلیمریزاسیون افزایشی

در این نوع پلیمریزاسیون ، از ترکیباتی که بند دوگانه (C ═ C) دارند، پلیمر می‌سازند. مثل تولید پلی اتیلن از اتیلن.

پلی اتیلن

C2H4 → (─ C2H4 ─)n

در این واکنش ، اتیلن در اثر حرارت به پلی اتیلن تبدیل می‌شود. جرم مولکولی پلی اتیلن بین 1000 تا 20000 می‌تواند متفاوت باشد. یعنی بر حسب شرایط ، درجه پلیمریزاسیون یعنی همان n مولکول پلیمر را می‌توان کم یا زیاد کرد.

آکریلان

n(CH2 ─ CHCN) → (─ CH2 ─ CHCN─)n

این پلیمر نیز از مشتقات اتیلن است. مونومر این پلیمر ، سیانید ونیل (آکریکونیتریل) است.

PVC

CH2 ═ CHCl → (─ CH2 ─ CHCl)n

پلی وینیل کلراید یا PVC نیز از پلیمریزاسیون کلرید وینیل CH2 ═ CHCl بوجود می‌آید.

کائوچو

کائوچو بر دو نوع است:


  • کائوچوی طبیعی:

    کائوچوی طبیعی که از شیره درختی به نام Hevea بدست می‌آید، از پلیمریزاسیون هیدروکربنی به نام 2- متیل -3 , 1- بوتادین معروف به ایزوپرن به فرمول CH2 ═ C (CH3) ─ CH ─ CH2 بوجود می‌آید:

CH2 ═ C (CH3) ─ CH ─ CH2 → (─ CH2 ─ C CH3 ═ CH ─ CH3)n

  • کائوچوی مصنوعی:

    چون در فرمول ساختمانی کائوچوی طبیعی پیوند دوگانه وجود دارد، به همین دلیل وقتی کائوچو را با
    گوگرد حرارت دهیم، این مونومرها پیوند پی خود را باز می‌کنند و با ظرفیتهای آزاد شده ، اتم گوگرد را می‌گیرند. در نتیجه کائوچو به لاستیک تبدیل می‌گردد. حرارت دادن کائوچو با گوگرد و تولید لاستیک را اصطلاحا ولکانیزاسیون (Vulcanization) می‌نامند و بهمین دلیل لاستیک حاصل را نیز کائوچوی ولکانیزه گویند.

    چند نوع کائوچوی مصنوعی نیز ساخته‌اند که از موادی مانند 1,3- بوتادین و جسمی به نام 2- کلرو 3 , 1- بوتادین معروف به
    کلروپرن به فرمول CH2 ═ CHCl ─ CH ═ CH2 و جسم دیگری به فرمول CH2 ─ C(CH3) ─ C(CH3) ═ CH2 به نام 3 , 2- دی متیل – 3 , 1- بوتادین به تنهایی یا مخلوط درست شده‌اند.

    کلروپرن بسهولت پلیمریزه شده و به نوعی کائوچوی مصنوعی به نام نئوپرن تبدیل می‌شود.

 

پلیمریزاسیون تراکمی

اگر در یک پلیمریزاسیون ، بر اثر واکنش مونومرها با هم ، مولکولهای کوچکی مثل H2O و NH3 و ... خارج شوند، این نوع پلیمریزاسیون را تراکمی می‌نامند. مثل پلمیریزاسیون گلوکز در تولید نشاسته و سلولز که منجر به خارج شدن آب می‌گردد و یا مثل بوجود آمدن نایلون که مانند مواد پروتئینی یک پلی آمید است و پلیمر شدن یک آمین دو ظرفیتی به نام هگزا متیلن دی آمین به فرمول NH2 ─ (CH2)6 ─ NH2 با یک اسید دو ظرفیتی به نام اسید آدیپیک HOOC ─ (CH2)4 ─ COOH بوجود می‌آید. در این عمل ، عامل OH_ اسید از دو طرف با هیدروژن گروه آمین NH2_ تشکیل آب داده و خارج می‌شوند و باقیمانده‌های مولکولهای آنها با هم ، زنجیر پلیمر را بوجود می‌آورند. به شکل زیر:


... + NH2 ─ (CH2)4 ─ NH2 ─ HOOC ─ (CH2 ─ COOH + ...

نایلون:


nH2O + (─ NH ─ (CH2)6 ─ N(H) ─ CO ─ (CH2)4 ─ CO ─)n

پلیمریزاسیون اشتراکی (کوپلیمریزاسیون)

اگر در عمل پلیمریزاسیون ، 2 مونومر مختلف با هم بطور مشترک پلیمر شوند و یک پلیمر را بوجود آورند، آن را کوپلیمر می‌نامند. مثلا یک نوع لاستیک وجود دارد، به نام بونا _ S که از پلیمریزاسیون دو جسم مختلف یکی به نام 3 , 1- بوتا دی‌ان CH2 ═ CH ─ CH ═ CH2 و دیگری به نام وینیل بنزن (استیرن) C6H5 CH ═ CH2 بوجود می‌آید که قسمتی از فرمول ساختمانی آن به شکل زیر است:


--CH2 ─ CH ═ CH ─ CH2 ─ CH(C6H5) ─ CH2--
+ نوشته شده در  پنجشنبه 12 مهر1386ساعت 18:43  توسط مدیر وبلاگ |  پیام به مدیر وبلاگ
 

مقدمه

تصور جهان پیشرفته کنونی بدون وجود مواد پلیمری مشکل می‌باشد. امروزه این مواد جزیی از زندگی ما شده‌اند و در ساخت اشیای مختلف ، از وسایل زندگی و مورد مصرف عمومی تا ابزار دقیق و پیچیده پزشکی و علمی بکار می‌روند. کلمه پلیمراز کلمه یونانی (Poly) به معنی چند و (Meros) به معنای واحد با قسمت بوجود آمده است. در این میان ساختمان پلیمرها با مولکولهای بسیار دراز زنجیر گونه با ساختمان فلزات کامل متفاوت است. این مولکولهای بلند از اتصال و بهم پیوستن هزاران واحد کوچک مولکولی مرسوم به منومر تشکیل شده‌اند. مواد طبیعی مانند ابریشم ، لاک، قیر طبیعی ، کشانها و سلولز ناخن دارای چنین ساختمان مولکولی هستند.

البته تا اوایل قرن نوزدهم میلادی توجه زیادی به مواد پلیمری نشده بود بومیان آمریکای مرکزی از برخی درختان شیرابه‌هایی استخراج می‌کردند که شیرابه بعدها نام لاتکس به خود گرفت. در سال 1829 ، دانشمندان متوجه شدند که در اثر مخلوط کردن لاتکس طبیعی با سولفور و حرارت دادن آن ماده‌ای قابل ذوب ایجاد می‌شود که می‌توان از آن محصولات مختلفی نظیر چرخ ارابه یا توپ تهیه کرد. در سال 1909 میلادی فنل فرمالدئید موسوم به باکلیت ساخته شد که در تهیه قطعات الکتریکی ، کلیدها ، پریزها و وسایل مصرف زیادی دارد.

در اثنای جنگ جهانی دوم موادی مثل نایلون پلی اتیلن ، اکریلیک موسوم به پرسپکس به دنیا عرضه شد. نئوپرن را شرکت دوپان در سال 1932 ابداع و به شکل تجارتی ابتدا با نام دوپرن و بعدها نئوپرن عرضه کرد.

شاخه‌های پلیمر

اولین قدم در زمینه صنعت پلاستیک توسط فردی به نام واسپاهیات انجام گرفت وی در تلاش بود ماده‌ای را به جای عاج فیل تهیه کند. وی توانست فرآیند تولید نیترات سلولز را زا سلولز ارائه کند. در دهه 1970 پلیمرهای‌هادی به بازار عرضه شدند که کاربرد بسیاری در صنعت رایانه دارند زیرا مدارها و ICهای رایانه‌ها از این مواد تهیه می‌شوند. و در سالهای اخیر مواد هوشمند پلیمری جایگاه تازه‌ای برای خود سنسورها پیدا کردند. پلیمرها را می‌توان از 7 دیدگاه مختلف طبقه بندی نمود. صنایع ، منبع ، عبور نور ، واکنش حرارتی ، واکنش‌های پلیمریزاسیون ، ساختمان مولکولی و ساختمان کریستالی.

از نظر صنایع مادر پلیمرها به چهار گروه صنایع لاستیک ، پلاستیک ، الیاف ، پوششی و چسب تقسیم بندی می‌شوند. اینها صنایع مادر در پلیمرها می‌باشند اما صنایع وابسته به پلیمر هم فراوان هستند مانند صنعت پزشکی در اعضای مصنوعی ، دندان مصنوعی ، پرکننده‌ها ، اورتوپدی از پلیمرها به وفور استفاده می‌شود. پلیمرها از لحاظ منبع به سه گروه اصلی تقسیم بندی می‌شوند که عبارتند از پلیمرهای طبیعی ، طبیعی اصلاح شده و مصنوعی.

رزین

منابع طبیعی رزینها ، حیوانات ، گیاهان و مواد معدنی می‌باشد. این پلیمرها به سادگی شکل پذیر بوده لیکن دوام کمی دارند. رایج عبارتند از روزین ، آسفالت، تار ، کمربا ، سندروس ، لیگنپین ، لاک شیشه‌ای می‌باشند. رزین‌های طبیعی اصلاح شده شامل سلولز و پروتئین می‌باشد سلولز قسمت اصلی گیاهان بوده و به عنوان ماده اولیه قابل دسترسی برای تولید پلاستیکها می‌باشد کازئین ساخته شده از شیر سرشیر گرفته ، تنها پلاستیک مشتق شده از پروتئین است که در عرصه تجارت نسبتا موفق است.

پلیمر مصنوعی

پلیمرهای مصنوعی را می‌توان از طریق واکنشهای پلیمریزاسیون بدست آورد. از مواد پلیمری می‌توان در تهیه پلاستیکها ، چسبها ، رنگها ، ظروف عایق ، مواد پزشکی بهره جست. پلاستیکها به تولید طرحهای جدید در اتومبیلها ، کامیونها ، اتوبوسها ، وسایل نقلیه سریع ، هاورکرافت ، قایقها ، ترنها ، آلات موسیقی ، وسایل خانه ، یراق آلات ساختمانی و سایر کاربردها کمک نموده‌اند در ادمه به بررسی کاربرد چندین پلیمر می‌پردازیم:

پلیمرهای بلوری مایع (LCP)

این پلیمرها بتازگی در بین مواد پلاستیکی ظهور کرده است. این مواد از استحکام ابعادی بسیار خوب ، مقاومت بالا ، مقاومت در مقابل مواد شیمیایی توام با خاصیت سهولت شکل پذیری برخوردار هستند. از این پلیمرها می‌توان به پلی اتیلن با چگالی کم قابل مصرف در ساخت عایق الکتریکی ، وسایل خانگی ، لوله و بطریهای یکبار مصرف ، پلی اتیلن با چگالی بالا قابل مصرف در ظروف زباله‌ها بطری ، انواع مخازن و لوله برای نگهداری و انتقال سیالات ، پلی اتیلن شبکهای ، پلی پروپیلن قابل مصرف در ساخت صندوق ، قطعات کوچک خودرو ، اجزای سواری ، اسکلت صندلی ، اتاقک تلویزیون و... اشاره نمود.

پلیمرهای زیست تخریب پذیر

این پلیمرها در طی سه دهه اخیر در تحقیقات بنیادی و صنایع شیمیایی و دارویی بسیار مورد توجه قرار گرفته‌اند. زیست تخریب پذیری به معنای تجزیه شدن پلیمر در دمای بالا طی دوره مشخص می‌باشد که بیشتر پلی استرهای آلیفاتیک استفاده می‌شود. از این پلیمرها در سیستم‌های آزاد سازی دارویی با رهایش کنترل شده یا در اتصالات ، مانند نخ‌های جراحی و ترمیم شکستگی استخوانها و کپسولهای کاشتی استفاده می‌شود.

پلی استایرن

این پلیمر به صورت گسترده‌ای در ساخت پلاتیکها و رزینهایی مانند عایقها و قایقهای فایبر گلاس در تولید لاستیک ، مواد حد واسط رزینهای تعویض یونی و در تولید کوپلیمرهایی مانند ABS و SBR کاربرد دارد. محصولات تولیدی از استایرن در بسته بندی ، عایق الکتریکی - حرارتی ، لوله‌ها ، قطعات اتومبیل ، فنجان و دیگر موادی که در ارتباط با مواد غذایی می‌باشند ، استفاده می‌شود.

لاستیکهای سیلیکون

مخلوط بسیار کانی- آلی هستند که از پلیمریزاسیون انواع سیلابها و سیلوکسانها بدست می‌آیند. با اینکه گرانند ولی مقاومت قابل توجه در برابر گرما به استفاده منحصر از این لاستیکها در مصارف بالا منجر شده است. این ترکیبات اشتغال پذیری نسبتا پایین ، گرانروی کم در درصد بالای رزین ، عدم سمیت ، خواص بالای دی الکتریک ، حل ناپذیری در آب و الکلها و ... دارند به دلیل همین خواص ترکیبات سیلیکون به عنوان سیال هیدرولیک و انتقال گرما ، روان کننده و گریس ، دزدگیر برای مصارف برقی ، رزینهای لایه کاری و پوشش و لعاب مقاوم در دمای بالا و الکلها و مواد صیقل کاری قابل استفاده‌اند. بیشترین مصرف اینها در صنایع هوا فضاست.

لاستیک اورتان

این پلیمرها از واکنش برخی پلی گلیکولها با دی ایزوسیاناتهای آلی بدست می‌آیند. مصرف اصلی این نوع پلیمرها تولید اسفنج انعطاف پذیر و الیاف کشسان است. در ساخت مبلمان ، تشک ، عایق - نوسانگیر و ... بکار می‌روند. ظهور نخ کشسان اسپندکس از جنش پلی یوره تان به دلیل توان بالای نگهداری این نوع نخ زمینه پوشاک ساپورت را دگرگون کرده است.

منابع مورد استفاده شده

  1. مهندسی پلاستیک تالیف آر. جی. کرافورد ، ترجمه مهرداد کوکبی
  2. پلاستیکهای صنعتی تالیف مهندس شیرین خسروی
  3. مواد پلاستیک تالیف حسین امیدیان
+ نوشته شده در  پنجشنبه 12 مهر1386ساعت 18:39  توسط مدیر وبلاگ |  پیام به مدیر وبلاگ
 

ریشه لغوی

واژه پلیمر از دو واژه یونانی Poly و Meros مشتق شده است و به معنی بسپار است.

مقدمه

بشر نخستین ، آموخته بود چگونه الیاف پروتئینی پشم و ابریشم و الیاف سلولزی پنبه و کتان را عمل آورد، رنگرزی کند و ببافد. بومیان جنوبی از لاستیک طبیعی ، برای ساختن اشیاء کشسان و پارچه‌های ضد آب استفاده می‌کردند. پلی کلروپرن ، نخستین لاستیک سنتزی است که در آمریکا تهیه شد و گسترش یافت. پلی بوتادین ، نخستین کائوچوی سنتزی است که آلمانی‌ها به نام بونا- اس به مقدار کافی تهیه کردند. بوتیل کائوچو ، یکی از چهار لاستیک سنتزی است که اکنون به مقدار بیشتری تهیه و مصرف می‌شود.

تاریخچه

نخستین لاستیک مصنوعی ، سلولوئید است که از نیترو سلولز و کافور توسط "پارکر" در سال 1865 تهیه شد. ولی در سال 1930، عمل پلیمریزاسیون و الکلاسیون کشف شد و در صنعت بکار گرفته شد. در این دوران ، آمونیاک برای تولید مواد منفجره ، تولوئن برای TNT و بوتادین و استیرن برای تولید لاستیک مصنوعی به مقدار زیادی از نفت تولید شد.

سیر تحولی

استات سلولز در سال 1894 توسط "بران دکرس" سنتز شد و در سال 1905 توسط "میلس" کامل شد. در سال 1900، "رم" ، پلیمریزاسیون ترکیبات آکریلیک را آغاز کرد و در سال 1901، "اسمیت" نخستین فتالات گلسیرین (یا فتالات گلسیریل) را تهیه کرد. در اواسط قرن بیستم در آلمان ، "اشتودینگر" ، قانون مهم ساختار مولکولهای بزرگ را وضع کرد. در سال 1934، کارخانه (ICI) موفق به تهیه مولکولهای بزرگ پلی اتیلن شد.

"دوپن" بطور منظم در زمینه تراکم مواد بررسیهایی انجام دارد که در نتیجه ، به تهیه پلی آمیدها یعنی الیاف نایلون نایل شد و الیاف پلی آمید را از کاپرولاکتام تهیه کرد که به الیاف پرلون شهرت یافت.

نقش و تاثیر پلیمرها در زندگی

کاغذ ، چوب ، نایلون ، الیاف پلی استر ، ظروف ملامین ، الیاف پلی اتیلن ، اندود تفلون ظروف آشپزی ، نشاسته ، گوشت ، مو ، پشم ، ابریشم ، لاستیک اتومبیل و... ، ماکرومولکولهایی هستند که روزانه با آنها برخورد می‌کنیم.

تصویر

مفاهیم مرتبط با شیمی پلیمر

در مورد پلیمرها با مفاهیمی همچون خواص فیزیکی و مکانیکی ، مکانیسم پلیمر شدن ، فرآورش پلیمرها روبرو هستیم.

خواص فیزیکی و مکانیکی پلیمرها

در بر گیرنده مفاهیم زیر است:

مورفولوژی ، رئولوژی ، انحلال پذیری ، وزن مولکولی ، روشهای آزمودن ، روشهای شناسایی.

مکانیسم پلیمری شدن

از سه طریق زیر است:

پلیمرشدن تراکمی ، پلیمرشدن افزایشی ، کوپلیمرشدن.

فرآورش پلیمرها

در برگیرنده مباحث زیر است:

پر کننده‌ها ، توان دهنده‌ها ، نرم سازها ، پایدار کننده‌ها، عمل آورنده‌ها ، رنگ‌ها و غیره.

شاخه‌های شیمی مرتبط با شیمی پلیمر

شیمی پلیمر با مباحث زیر در ارتباط است:


  • شیمی آلی 
  • شیمی آلی فلزی 
  • شیمی دارویی 
  • پتروشیمی
  • صنایع نفت

چند کاربرد مهم پلیمرها

پلی آمید (نایلون)

برای تهیه الیاف ، طناب ، تسمه ، البسه ، پلاستیک صنعتی ، جایگزین فلز در ساخت غلتک یا تاقان ، بادامک ، دنده ، وسایل الکتریکی بکار می‌رود.

پلی استر

بصورت الیاف ، جهت تهیه انواع لباسها ، نخ لاستیک ، بصورت لایه برای تهیه نوار ضبط صوت و فیلم بکار می‌رود.

تصویر

پلی اتیلن (کم‌چگالی ، شاخه‌دار)

بصورت لایه ورقه در صنایع بسته بندی ، کیسه پلاستیکی ، الیاف پارچه بافتنی ، بسته‌بندی غذای منجمد ، پرده ، پوشش پلاستیکی ، عایق ، سیم و کابل ، بطری بکار می‌رود.

پلی استیرل

برای تهیه رزینهای تبادل یونی ، انواع کوپلیمرها ، رزینهای ABC ، مواد اسفنجی ، وسایل نوری ، وسایل خانگی ، اسباب بازی ، مبلمان بکار می‌رود.
 

javascripts



google
بزرگترین سایت جاوا اسکریپت ایران
Clock And Date